Convergence Theorems for a Common Fixed Point of a Finite Family of Nonself Nonexpansive Mappings

نویسندگان

  • C. E. CHIDUME
  • HABTU ZEGEYE
  • NASEER SHAHZAD
چکیده

Let K be a nonempty closed convex subset of a reflexive real Banach space E which has a uniformly Gâteaux differentiable norm. Assume that K is a sunny nonexpansive retract of E with Q as the sunny nonexpansive retraction. Let Ti : K → E, i = 1, . . . ,r, be a family of nonexpansive mappings which are weakly inward. Assume that every nonempty closed bounded convex subset of K has the fixed point property for nonexpansive mappings. A strong convergence theorem is proved for a common fixed point of a family of nonexpansive mappings provided that Ti, i= 1,2, . . . ,r, satisfy some mild conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak and strong convergence theorems for a finite family of generalized asymptotically quasinonexpansive nonself-mappings

In this paper, we introduce and study a new iterative scheme toapproximate a common xed point for a nite family of generalized asymptoticallyquasi-nonexpansive nonself-mappings in Banach spaces. Several strong and weakconvergence theorems of the proposed iteration are established. The main resultsobtained in this paper generalize and rene some known results in the currentliterature.

متن کامل

A new approximation method for common fixed points of a finite family of nonexpansive non-self mappings in Banach spaces

In this paper, we introduce a new iterative scheme to approximate a common fixed point for a finite family of nonexpansive non-self mappings. Strong convergence theorems of the proposed iteration in Banach spaces.

متن کامل

Convergence theorems of an implicit iteration process for asymptotically pseudocontractive mappings

The purpose of this paper is to study the strong convergence of an implicit iteration process with errors to a common fixed point for a finite family of asymptotically pseudocontractive mappings and nonexpansive mappings in normed linear spaces. The results in this paper improve and extend the corresponding results of Xu and Ori, Zhou and Chang, Sun, Yang and Yu in some aspects.

متن کامل

Common fixed points of a finite family of multivalued quasi-nonexpansive mappings in uniformly convex Banach spaces

In this paper, we introduce a one-step iterative scheme for finding a common fixed point of a finite family of multivalued quasi-nonexpansive mappings in a real uniformly convex Banach space. We establish weak and strong convergence theorems of the propose iterative scheme under some appropriate conditions.

متن کامل

Multi - step iterations with errors for common fixed points of a finite family of nonself asymptotically nonexpansive mappings ∗

In this paper we established strong and weak convergence theorems for a multi-step iterative scheme with errors for nonself asymptotically nonexpansive mappings in the real uniformly convex Banach space. Our results extend and improve the ones announced by Lin Wang [Lin Wang, Strong and weak convergence theorems for common fixed points of nonself asymptotically nonexpansive mappings, J. Math. A...

متن کامل

Convergence theorems of multi-step iterative algorithm with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces

The purpose of this paper is to study and give the necessary andsufficient condition of strong convergence of the multi-step iterative algorithmwith errors for a finite family of generalized asymptotically quasi-nonexpansivemappings to converge to common fixed points in Banach spaces. Our resultsextend and improve some recent results in the literature (see, e.g. [2, 3, 5, 6, 7, 8,11, 14, 19]).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005